Rood-zwarte boom

In deze tutorial leer je wat een rood-zwarte boom is. Ook vindt u werkvoorbeelden van verschillende bewerkingen die worden uitgevoerd op een rood-zwarte boom in C, C ++, Java en Python.

Rood-zwarte boom is een zelfbalancerende binaire zoekboom waarin elk knooppunt een extra bit bevat voor het aangeven van de kleur van het knooppunt, rood of zwart.

Een roodzwarte boom voldoet aan de volgende eigenschappen:

  1. Rood / zwarte eigenschap: elk knooppunt is gekleurd, rood of zwart.
  2. Worteleigenschap: de wortel is zwart.
  3. Leaf Property: Elk blad (NIL) is zwart.
  4. Rode eigenschap: Als een rode knoop kinderen heeft, zijn de kinderen altijd zwart.
  5. Diepte-eigenschap: voor elk knooppunt heeft elk eenvoudig pad van dit knooppunt naar een van de onderliggende bladeren dezelfde zwartdiepte (het aantal zwarte knooppunten).

Een voorbeeld van een rood-zwarte boom is:

Rode zwarte boom

Elk knooppunt heeft de volgende attributen:

  • kleur
  • sleutel
  • leftChild
  • rightChild
  • ouder (behalve hoofdknooppunt)

Hoe behoudt de roodzwarte boom de eigenschap van zelfbalancering?

De rood-zwarte kleur is bedoeld om de boom in balans te houden.

De beperkingen die aan de knoopkleuren worden opgelegd, zorgen ervoor dat elk eenvoudig pad van de wortel naar een blad niet meer dan twee keer zo lang is als elk ander pad. Het helpt bij het handhaven van de zelfbalancerende eigenschap van de roodzwarte boom.

Operaties op een rood-zwarte boom

Verschillende bewerkingen die kunnen worden uitgevoerd op een rood-zwarte boom zijn:

Roteren van de substructuren in een rood-zwarte boom

Bij rotatie worden de posities van de knooppunten van een substructuur verwisseld.

De rotatiebewerking wordt gebruikt om de eigenschappen van een rood-zwarte boom te behouden wanneer deze worden geschonden door andere bewerkingen zoals invoegen en verwijderen.

Er zijn twee soorten rotaties:

Links draaien

Bij rotatie naar links wordt de opstelling van de knooppunten aan de rechterkant omgezet in de opstelling op het linkerknooppunt.

Algoritme

  1. Laat de eerste boom zijn: Eerste boom
  2. Als y een linker substructuur heeft, wijs dan x toe als de ouder van de linker substructuur van y. Wijs x toe als de ouder van de linker substructuur van y
  3. Als de ouder van x is NULL, maak dan y als de wortel van de boom.
  4. Anders, als x het linkerkind van p is, maak dan y als het linkerkind van p.
  5. Wijs y anders toe als het juiste kind van p. Verander de ouder van x in die van y
  6. Maak y als de ouder van x. Wijs y toe als de ouder van x.

Rechts draaien

Bij rotatie naar rechts wordt de opstelling van de knooppunten aan de linkerkant omgezet in de opstelling op het rechterknooppunt.

  1. Laat de eerste boom zijn: Initiële boom
  2. Als x een rechter substructuur heeft, wijs dan y toe als de ouder van de rechter substructuur van x. Wijs y toe als de ouder van de rechter substructuur van x
  3. Als de ouder van y is NULL, maak dan x als de wortel van de boom.
  4. Anders, als y het juiste kind is van zijn ouder p, maak dan x als het juiste kind van p.
  5. Wijs anders x toe als het linkerkind van p. Wijs de ouder van y toe als de ouder van x
  6. Maak x als de ouder van y. Wijs x toe als de ouder van y

Links-rechts en rechts-links draaien

Bij links-rechts rotatie worden de arrangementen eerst naar links en vervolgens naar rechts verschoven.

  1. Draai naar links op xy. Links draaien xy
  2. Draai naar rechts op yz. Draai naar rechts

Bij rotatie rechts-links worden de arrangementen eerst naar rechts en vervolgens naar links verschoven.

  1. Draai naar rechts op xy. Rechts draaien xy
  2. Draai naar links op zy. Links draaien zy

Een element invoegen in een rood-zwarte boom

Bij het invoegen van een nieuw knooppunt wordt het nieuwe knooppunt altijd ingevoegd als een RODE knoop. Als na het invoegen van een nieuw knooppunt de boom de eigenschappen van de rood-zwarte boom schendt, voeren we de volgende bewerkingen uit.

  1. Kleur opnieuw
  2. Rotatie

Algoritme om een ​​knooppunt in te voegen

De volgende stappen worden gevolgd om een ​​nieuw element in een rood-zwarte boom te plaatsen:

  1. Laat y het blad (dwz. NIL) Zijn en x de wortel van de boom.
  2. Controleer of de boom leeg is (dwz of x is NIL). Zo ja, voeg dan newNode in als een hoofdknooppunt en kleur het zwart.
  3. Herhaal anders de volgende stappen totdat blad ( NIL) is bereikt.
    1. Vergelijk newKey met rootKey.
    2. Als newKey groter is dan rootKey, bladert u door de rechter substructuur.
    3. Ga anders door de linker substructuur.
  4. Wijs de ouder van het blad toe als een ouder van newNode.
  5. Als leafKey groter is dan newKey, maakt u newNode als rightChild.
  6. Maak anders newNode als leftChild.
  7. Toewijzen NULLaan de linker- en rechterkantChild of newNode.
  8. Wijs een RODE kleur toe aan newNode.
  9. Roep InsertFix-algoritme aan om de eigenschap van rood-zwarte boom te behouden als deze wordt geschonden.

Waarom zijn nieuw ingevoegde knooppunten altijd rood in een rood-zwarte boom?

Dit komt doordat het invoegen van een rode knoop de diepte-eigenschap van een rood-zwarte boom niet schendt.

Als u een rood knooppunt aan een rood knooppunt koppelt, wordt de regel geschonden, maar is het gemakkelijker om dit probleem op te lossen dan het probleem dat wordt veroorzaakt door het schenden van de eigenschap depth.

Algoritme om de rood-zwarte eigenschap te behouden na invoeging

Dit algoritme wordt gebruikt om de eigenschap van een rood-zwarte boom te behouden als het invoegen van een newNode deze eigenschap schendt.

  1. Doe het volgende terwijl de ouder van newNode p ROOD is.
  2. Als p het linkerkind is van grootouder gP van z, doe dan het volgende.
    Geval I:
    1. Als de kleur van het rechterkind van gP van z ROOD is, stel de kleur van beide kinderen van gP dan in als ZWART en de kleur van gP als ROOD.
    2. Wijs gP toe aan newNode.
      Geval II:
    3. Anders, als newNode het juiste kind van p is, wijs dan p toe aan newNode.
    4. Links draaien newNode.
      Geval III:
    5. Zet de kleur van p als ZWART en de kleur van gP als ROOD.
    6. Rechtsom draaien GP.
  3. Anders doet u het volgende.
    1. Als de kleur van het linkerkind van gP van z ROOD is, stel dan de kleur van beide kinderen van gP in als ZWART en de kleur van gP als ROOD.
    2. Wijs gP toe aan newNode.
    3. Anders, als newNode het linkerkind van p is, wijs dan p toe aan newNode en Rechts-Rotate newNode.
    4. Zet de kleur van p als ZWART en de kleur van gP als ROOD.
    5. Linksom draaien GP.
  4. Stel de wortel van de boom in op ZWART.

Een element verwijderen uit een rood-zwarte boom

Met deze bewerking wordt een knooppunt uit de boom verwijderd. Na het verwijderen van een knoop blijft de rood-zwarte eigenschap weer behouden.

Algoritme om een ​​knooppunt te verwijderen

  1. Sla de kleur van nodeToBeDeleted op in origrinalColor.
  2. Als het linkerkind van nodeToBeDeleted NULL
    1. Wijs het rechterkind van nodeToBeDeleted toe aan x.
    2. Transplanteer nodeToBeDeleted met x.
  3. Anders als het juiste kind van nodeToBeDeleted is NULL
    1. Wijs het linkerkind van nodeToBeDeleted toe aan x.
    2. Transplanteer nodeToBeDeleted met x.
  4. Anders
    1. Wijs het minimum van de rechter substructuur van noteToBeDeleted toe aan y.
    2. Bewaar de kleur van y in originalColor.
    3. Wijs het rechterkind van y toe aan x.
    4. Als y een kind is van nodeToBeDeleted, stel dan de ouder van x in als y.
    5. Anders, transplanteer y met rightChild of y.
    6. Transplant nodeToBeDeleted met y.
    7. Stel de kleur van y in met originalColor.
  5. Als de originele kleur ZWART is, bel dan DeleteFix (x).

Algoritme om de eigenschap Rood-Zwart te behouden na verwijdering

Dit algoritme wordt geïmplementeerd wanneer een zwart knooppunt wordt verwijderd omdat het de zwarte diepte-eigenschap van de rood-zwarte boom schendt.

Deze overtreding wordt gecorrigeerd door aan te nemen dat knooppunt x (dat de oorspronkelijke positie van y inneemt) een extra zwart heeft. Dit maakt knooppunt x noch rood noch zwart. Het is ofwel dubbel zwart of zwart-rood. Dit schendt de rood-zwarte eigenschappen.

Het kleurattribuut van x wordt echter niet gewijzigd, maar het extra zwart wordt weergegeven in x'en die naar het knooppunt wijzen.

Het extra zwart kan worden verwijderd als

  1. Het bereikt het hoofdknooppunt.
  2. Als x naar een rood-zwarte knoop wijst. In dit geval is x zwart gekleurd.
  3. Er worden geschikte rotaties en herkleuring uitgevoerd.

Het volgende algoritme behoudt de eigenschappen van een rood-zwarte boom.

  1. Doe het volgende totdat de x niet de wortel van de boom is en de kleur van x ZWART is
  2. Als x het linkerkind van zijn ouder is,
    1. Wijs w toe aan de broer of zus van x.
    2. Als het rechterkind van ouder van x ROOD is,
      Geval I:
      1. Stel de kleur van het rechterkind van de ouder van x in op ZWART.
      2. Stel de kleur van de ouder van x in als ROOD.
      3. Links-draai de ouder van x.
      4. Wijs het rechterkind van de ouder van x toe aan w.
    3. Als de kleur van zowel het rechter- als het linkerkind van w ZWART is,
      Geval II:
      1. Stel de kleur van w in op ROOD
      2. Wijs de ouder van x toe aan x.
    4. Anders als de kleur van het rechterkind van w ZWART is
      Geval III:
      1. Zet de kleur van het leftChild of w als BLACK
      2. Stel de kleur van w in op ROOD
      3. Rechtsom draaien w.
      4. Wijs het rechterkind van de ouder van x toe aan w.
    5. Doe het volgende als een van de bovenstaande gevallen niet optreedt.
      Geval IV:
      1. Stel de kleur van w in als de kleur van de ouder van x.
      2. Stel de kleur van de ouder van x in op ZWART.
      3. Stel de kleur van het rechterkind van w in op ZWART.
      4. Links-draai de ouder van x.
      5. Stel x in als de wortel van de boom.
  3. Anders hetzelfde als hierboven met rechts veranderd naar links en vice versa.
  4. Zet de kleur van x op ZWART.

Raadpleeg de bewerkingen voor invoegen en verwijderen voor meer uitleg met voorbeelden.

Python, Java en C / C ++ voorbeelden

Python Java C C ++
 # Implementing Red-Black Tree in Python import sys # Node creation class Node(): def __init__(self, item): self.item = item self.parent = None self.left = None self.right = None self.color = 1 class RedBlackTree(): def __init__(self): self.TNULL = Node(0) self.TNULL.color = 0 self.TNULL.left = None self.TNULL.right = None self.root = self.TNULL # Preorder def pre_order_helper(self, node): if node != TNULL: sys.stdout.write(node.item + " ") self.pre_order_helper(node.left) self.pre_order_helper(node.right) # Inorder def in_order_helper(self, node): if node != TNULL: self.in_order_helper(node.left) sys.stdout.write(node.item + " ") self.in_order_helper(node.right) # Postorder def post_order_helper(self, node): if node != TNULL: self.post_order_helper(node.left) self.post_order_helper(node.right) sys.stdout.write(node.item + " ") # Search the tree def search_tree_helper(self, node, key): if node == TNULL or key == node.item: return node if key < node.item: return self.search_tree_helper(node.left, key) return self.search_tree_helper(node.right, key) # Balancing the tree after deletion def delete_fix(self, x): while x != self.root and x.color == 0: if x == x.parent.left: s = x.parent.right if s.color == 1: s.color = 0 x.parent.color = 1 self.left_rotate(x.parent) s = x.parent.right if s.left.color == 0 and s.right.color == 0: s.color = 1 x = x.parent else: if s.right.color == 0: s.left.color = 0 s.color = 1 self.right_rotate(s) s = x.parent.right s.color = x.parent.color x.parent.color = 0 s.right.color = 0 self.left_rotate(x.parent) x = self.root else: s = x.parent.left if s.color == 1: s.color = 0 x.parent.color = 1 self.right_rotate(x.parent) s = x.parent.left if s.right.color == 0 and s.right.color == 0: s.color = 1 x = x.parent else: if s.left.color == 0: s.right.color = 0 s.color = 1 self.left_rotate(s) s = x.parent.left s.color = x.parent.color x.parent.color = 0 s.left.color = 0 self.right_rotate(x.parent) x = self.root x.color = 0 def __rb_transplant(self, u, v): if u.parent == None: self.root = v elif u == u.parent.left: u.parent.left = v else: u.parent.right = v v.parent = u.parent # Node deletion def delete_node_helper(self, node, key): z = self.TNULL while node != self.TNULL: if node.item == key: z = node if node.item <= key: node = node.right else: node = node.left if z == self.TNULL: print("Cannot find key in the tree") return y = z y_original_color = y.color if z.left == self.TNULL: x = z.right self.__rb_transplant(z, z.right) elif (z.right == self.TNULL): x = z.left self.__rb_transplant(z, z.left) else: y = self.minimum(z.right) y_original_color = y.color x = y.right if y.parent == z: x.parent = y else: self.__rb_transplant(y, y.right) y.right = z.right y.right.parent = y self.__rb_transplant(z, y) y.left = z.left y.left.parent = y y.color = z.color if y_original_color == 0: self.delete_fix(x) # Balance the tree after insertion def fix_insert(self, k): while k.parent.color == 1: if k.parent == k.parent.parent.right: u = k.parent.parent.left if u.color == 1: u.color = 0 k.parent.color = 0 k.parent.parent.color = 1 k = k.parent.parent else: if k == k.parent.left: k = k.parent self.right_rotate(k) k.parent.color = 0 k.parent.parent.color = 1 self.left_rotate(k.parent.parent) else: u = k.parent.parent.right if u.color == 1: u.color = 0 k.parent.color = 0 k.parent.parent.color = 1 k = k.parent.parent else: if k == k.parent.right: k = k.parent self.left_rotate(k) k.parent.color = 0 k.parent.parent.color = 1 self.right_rotate(k.parent.parent) if k == self.root: break self.root.color = 0 # Printing the tree def __print_helper(self, node, indent, last): if node != self.TNULL: sys.stdout.write(indent) if last: sys.stdout.write("R----") indent += " " else: sys.stdout.write("L----") indent += "| " s_color = "RED" if node.color == 1 else "BLACK" print(str(node.item) + "(" + s_color + ")") self.__print_helper(node.left, indent, False) self.__print_helper(node.right, indent, True) def preorder(self): self.pre_order_helper(self.root) def inorder(self): self.in_order_helper(self.root) def postorder(self): self.post_order_helper(self.root) def searchTree(self, k): return self.search_tree_helper(self.root, k) def minimum(self, node): while node.left != self.TNULL: node = node.left return node def maximum(self, node): while node.right != self.TNULL: node = node.right return node def successor(self, x): if x.right != self.TNULL: return self.minimum(x.right) y = x.parent while y != self.TNULL and x == y.right: x = y y = y.parent return y def predecessor(self, x): if (x.left != self.TNULL): return self.maximum(x.left) y = x.parent while y != self.TNULL and x == y.left: x = y y = y.parent return y def left_rotate(self, x): y = x.right x.right = y.left if y.left != self.TNULL: y.left.parent = x y.parent = x.parent if x.parent == None: self.root = y elif x == x.parent.left: x.parent.left = y else: x.parent.right = y y.left = x x.parent = y def right_rotate(self, x): y = x.left x.left = y.right if y.right != self.TNULL: y.right.parent = x y.parent = x.parent if x.parent == None: self.root = y elif x == x.parent.right: x.parent.right = y else: x.parent.left = y y.right = x x.parent = y def insert(self, key): node = Node(key) node.parent = None node.item = key node.left = self.TNULL node.right = self.TNULL node.color = 1 y = None x = self.root while x != self.TNULL: y = x if node.item < x.item: x = x.left else: x = x.right node.parent = y if y == None: self.root = node elif node.item < y.item: y.left = node else: y.right = node if node.parent == None: node.color = 0 return if node.parent.parent == None: return self.fix_insert(node) def get_root(self): return self.root def delete_node(self, item): self.delete_node_helper(self.root, item) def print_tree(self): self.__print_helper(self.root, "", True) if __name__ == "__main__": bst = RedBlackTree() bst.insert(55) bst.insert(40) bst.insert(65) bst.insert(60) bst.insert(75) bst.insert(57) bst.print_tree() print("After deleting an element") bst.delete_node(40) bst.print_tree() 
 // Implementing Red-Black Tree in Java class Node ( int data; Node parent; Node left; Node right; int color; ) public class RedBlackTree ( private Node root; private Node TNULL; // Preorder private void preOrderHelper(Node node) ( if (node != TNULL) ( System.out.print(node.data + " "); preOrderHelper(node.left); preOrderHelper(node.right); ) ) // Inorder private void inOrderHelper(Node node) ( if (node != TNULL) ( inOrderHelper(node.left); System.out.print(node.data + " "); inOrderHelper(node.right); ) ) // Post order private void postOrderHelper(Node node) ( if (node != TNULL) ( postOrderHelper(node.left); postOrderHelper(node.right); System.out.print(node.data + " "); ) ) // Search the tree private Node searchTreeHelper(Node node, int key) ( if (node == TNULL || key == node.data) ( return node; ) if (key < node.data) ( return searchTreeHelper(node.left, key); ) return searchTreeHelper(node.right, key); ) // Balance the tree after deletion of a node private void fixDelete(Node x) ( Node s; while (x != root && x.color == 0) ( if (x == x.parent.left) ( s = x.parent.right; if (s.color == 1) ( s.color = 0; x.parent.color = 1; leftRotate(x.parent); s = x.parent.right; ) if (s.left.color == 0 && s.right.color == 0) ( s.color = 1; x = x.parent; ) else ( if (s.right.color == 0) ( s.left.color = 0; s.color = 1; rightRotate(s); s = x.parent.right; ) s.color = x.parent.color; x.parent.color = 0; s.right.color = 0; leftRotate(x.parent); x = root; ) ) else ( s = x.parent.left; if (s.color == 1) ( s.color = 0; x.parent.color = 1; rightRotate(x.parent); s = x.parent.left; ) if (s.right.color == 0 && s.right.color == 0) ( s.color = 1; x = x.parent; ) else ( if (s.left.color == 0) ( s.right.color = 0; s.color = 1; leftRotate(s); s = x.parent.left; ) s.color = x.parent.color; x.parent.color = 0; s.left.color = 0; rightRotate(x.parent); x = root; ) ) ) x.color = 0; ) private void rbTransplant(Node u, Node v) ( if (u.parent == null) ( root = v; ) else if (u == u.parent.left) ( u.parent.left = v; ) else ( u.parent.right = v; ) v.parent = u.parent; ) private void deleteNodeHelper(Node node, int key) ( Node z = TNULL; Node x, y; while (node != TNULL) ( if (node.data == key) ( z = node; ) if (node.data <= key) ( node = node.right; ) else ( node = node.left; ) ) if (z == TNULL) ( System.out.println("Couldn't find key in the tree"); return; ) y = z; int yOriginalColor = y.color; if (z.left == TNULL) ( x = z.right; rbTransplant(z, z.right); ) else if (z.right == TNULL) ( x = z.left; rbTransplant(z, z.left); ) else ( y = minimum(z.right); yOriginalColor = y.color; x = y.right; if (y.parent == z) ( x.parent = y; ) else ( rbTransplant(y, y.right); y.right = z.right; y.right.parent = y; ) rbTransplant(z, y); y.left = z.left; y.left.parent = y; y.color = z.color; ) if (yOriginalColor == 0) ( fixDelete(x); ) ) // Balance the node after insertion private void fixInsert(Node k) ( Node u; while (k.parent.color == 1) ( if (k.parent == k.parent.parent.right) ( u = k.parent.parent.left; if (u.color == 1) ( u.color = 0; k.parent.color = 0; k.parent.parent.color = 1; k = k.parent.parent; ) else ( if (k == k.parent.left) ( k = k.parent; rightRotate(k); ) k.parent.color = 0; k.parent.parent.color = 1; leftRotate(k.parent.parent); ) ) else ( u = k.parent.parent.right; if (u.color == 1) ( u.color = 0; k.parent.color = 0; k.parent.parent.color = 1; k = k.parent.parent; ) else ( if (k == k.parent.right) ( k = k.parent; leftRotate(k); ) k.parent.color = 0; k.parent.parent.color = 1; rightRotate(k.parent.parent); ) ) if (k == root) ( break; ) ) root.color = 0; ) private void printHelper(Node root, String indent, boolean last) ( if (root != TNULL) ( System.out.print(indent); if (last) ( System.out.print("R----"); indent += " "; ) else ( System.out.print("L----"); indent += "| "; ) String sColor = root.color == 1 ? "RED" : "BLACK"; System.out.println(root.data + "(" + sColor + ")"); printHelper(root.left, indent, false); printHelper(root.right, indent, true); ) ) public RedBlackTree() ( TNULL = new Node(); TNULL.color = 0; TNULL.left = null; TNULL.right = null; root = TNULL; ) public void preorder() ( preOrderHelper(this.root); ) public void inorder() ( inOrderHelper(this.root); ) public void postorder() ( postOrderHelper(this.root); ) public Node searchTree(int k) ( return searchTreeHelper(this.root, k); ) public Node minimum(Node node) ( while (node.left != TNULL) ( node = node.left; ) return node; ) public Node maximum(Node node) ( while (node.right != TNULL) ( node = node.right; ) return node; ) public Node successor(Node x) ( if (x.right != TNULL) ( return minimum(x.right); ) Node y = x.parent; while (y != TNULL && x == y.right) ( x = y; y = y.parent; ) return y; ) public Node predecessor(Node x) ( if (x.left != TNULL) ( return maximum(x.left); ) Node y = x.parent; while (y != TNULL && x == y.left) ( x = y; y = y.parent; ) return y; ) public void leftRotate(Node x) ( Node y = x.right; x.right = y.left; if (y.left != TNULL) ( y.left.parent = x; ) y.parent = x.parent; if (x.parent == null) ( this.root = y; ) else if (x == x.parent.left) ( x.parent.left = y; ) else ( x.parent.right = y; ) y.left = x; x.parent = y; ) public void rightRotate(Node x) ( Node y = x.left; x.left = y.right; if (y.right != TNULL) ( y.right.parent = x; ) y.parent = x.parent; if (x.parent == null) ( this.root = y; ) else if (x == x.parent.right) ( x.parent.right = y; ) else ( x.parent.left = y; ) y.right = x; x.parent = y; ) public void insert(int key) ( Node node = new Node(); node.parent = null; node.data = key; node.left = TNULL; node.right = TNULL; node.color = 1; Node y = null; Node x = this.root; while (x != TNULL) ( y = x; if (node.data < x.data) ( x = x.left; ) else ( x = x.right; ) ) node.parent = y; if (y == null) ( root = node; ) else if (node.data < y.data) ( y.left = node; ) else ( y.right = node; ) if (node.parent == null) ( node.color = 0; return; ) if (node.parent.parent == null) ( return; ) fixInsert(node); ) public Node getRoot() ( return this.root; ) public void deleteNode(int data) ( deleteNodeHelper(this.root, data); ) public void printTree() ( printHelper(this.root, "", true); ) public static void main(String() args) ( RedBlackTree bst = new RedBlackTree(); bst.insert(55); bst.insert(40); bst.insert(65); bst.insert(60); bst.insert(75); bst.insert(57); bst.printTree(); System.out.println("After deleting:"); bst.deleteNode(40); bst.printTree(); ) )
 // Implementing Red-Black Tree in C #include #include enum nodeColor ( RED, BLACK ); struct rbNode ( int data, color; struct rbNode *link(2); ); struct rbNode *root = NULL; // Create a red-black tree struct rbNode *createNode(int data) ( struct rbNode *newnode; newnode = (struct rbNode *)malloc(sizeof(struct rbNode)); newnode->data = data; newnode->color = RED; newnode->link(0) = newnode->link(1) = NULL; return newnode; ) // Insert an node void insertion(int data) ( struct rbNode *stack(98), *ptr, *newnode, *xPtr, *yPtr; int dir(98), ht = 0, index; ptr = root; if (!root) ( root = createNode(data); return; ) stack(ht) = root; dir(ht++) = 0; while (ptr != NULL) ( if (ptr->data == data) ( printf("Duplicates Not Allowed!!"); return; ) index = (data - ptr->data)> 0 ? 1 : 0; stack(ht) = ptr; ptr = ptr->link(index); dir(ht++) = index; ) stack(ht - 1)->link(index) = newnode = createNode(data); while ((ht>= 3) && (stack(ht - 1)->color == RED)) ( if (dir(ht - 2) == 0) ( yPtr = stack(ht - 2)->link(1); if (yPtr != NULL && yPtr->color == RED) ( stack(ht - 2)->color = RED; stack(ht - 1)->color = yPtr->color = BLACK; ht = ht - 2; ) else ( if (dir(ht - 1) == 0) ( yPtr = stack(ht - 1); ) else ( xPtr = stack(ht - 1); yPtr = xPtr->link(1); xPtr->link(1) = yPtr->link(0); yPtr->link(0) = xPtr; stack(ht - 2)->link(0) = yPtr; ) xPtr = stack(ht - 2); xPtr->color = RED; yPtr->color = BLACK; xPtr->link(0) = yPtr->link(1); yPtr->link(1) = xPtr; if (xPtr == root) ( root = yPtr; ) else ( stack(ht - 3)->link(dir(ht - 3)) = yPtr; ) break; ) ) else ( yPtr = stack(ht - 2)->link(0); if ((yPtr != NULL) && (yPtr->color == RED)) ( stack(ht - 2)->color = RED; stack(ht - 1)->color = yPtr->color = BLACK; ht = ht - 2; ) else ( if (dir(ht - 1) == 1) ( yPtr = stack(ht - 1); ) else ( xPtr = stack(ht - 1); yPtr = xPtr->link(0); xPtr->link(0) = yPtr->link(1); yPtr->link(1) = xPtr; stack(ht - 2)->link(1) = yPtr; ) xPtr = stack(ht - 2); yPtr->color = BLACK; xPtr->color = RED; xPtr->link(1) = yPtr->link(0); yPtr->link(0) = xPtr; if (xPtr == root) ( root = yPtr; ) else ( stack(ht - 3)->link(dir(ht - 3)) = yPtr; ) break; ) ) ) root->color = BLACK; ) // Delete a node void deletion(int data) ( struct rbNode *stack(98), *ptr, *xPtr, *yPtr; struct rbNode *pPtr, *qPtr, *rPtr; int dir(98), ht = 0, diff, i; enum nodeColor color; if (!root) ( printf("Tree not available"); return; ) ptr = root; while (ptr != NULL) ( if ((data - ptr->data) == 0) break; diff = (data - ptr->data)> 0 ? 1 : 0; stack(ht) = ptr; dir(ht++) = diff; ptr = ptr->link(diff); ) if (ptr->link(1) == NULL) ( if ((ptr == root) && (ptr->link(0) == NULL)) ( free(ptr); root = NULL; ) else if (ptr == root) ( root = ptr->link(0); free(ptr); ) else ( stack(ht - 1)->link(dir(ht - 1)) = ptr->link(0); ) ) else ( xPtr = ptr->link(1); if (xPtr->link(0) == NULL) ( xPtr->link(0) = ptr->link(0); color = xPtr->color; xPtr->color = ptr->color; ptr->color = color; if (ptr == root) ( root = xPtr; ) else ( stack(ht - 1)->link(dir(ht - 1)) = xPtr; ) dir(ht) = 1; stack(ht++) = xPtr; ) else ( i = ht++; while (1) ( dir(ht) = 0; stack(ht++) = xPtr; yPtr = xPtr->link(0); if (!yPtr->link(0)) break; xPtr = yPtr; ) dir(i) = 1; stack(i) = yPtr; if (i> 0) stack(i - 1)->link(dir(i - 1)) = yPtr; yPtr->link(0) = ptr->link(0); xPtr->link(0) = yPtr->link(1); yPtr->link(1) = ptr->link(1); if (ptr == root) ( root = yPtr; ) color = yPtr->color; yPtr->color = ptr->color; ptr->color = color; ) ) if (ht color == BLACK) ( while (1) ( pPtr = stack(ht - 1)->link(dir(ht - 1)); if (pPtr && pPtr->color == RED) ( pPtr->color = BLACK; break; ) if (ht link(1); if (!rPtr) break; if (rPtr->color == RED) ( stack(ht - 1)->color = RED; rPtr->color = BLACK; stack(ht - 1)->link(1) = rPtr->link(0); rPtr->link(0) = stack(ht - 1); if (stack(ht - 1) == root) ( root = rPtr; ) else ( stack(ht - 2)->link(dir(ht - 2)) = rPtr; ) dir(ht) = 0; stack(ht) = stack(ht - 1); stack(ht - 1) = rPtr; ht++; rPtr = stack(ht - 1)->link(1); ) if ((!rPtr->link(0) || rPtr->link(0)->color == BLACK) && (!rPtr->link(1) || rPtr->link(1)->color == BLACK)) ( rPtr->color = RED; ) else ( if (!rPtr->link(1) || rPtr->link(1)->color == BLACK) ( qPtr = rPtr->link(0); rPtr->color = RED; qPtr->color = BLACK; rPtr->link(0) = qPtr->link(1); qPtr->link(1) = rPtr; rPtr = stack(ht - 1)->link(1) = qPtr; ) rPtr->color = stack(ht - 1)->color; stack(ht - 1)->color = BLACK; rPtr->link(1)->color = BLACK; stack(ht - 1)->link(1) = rPtr->link(0); rPtr->link(0) = stack(ht - 1); if (stack(ht - 1) == root) ( root = rPtr; ) else ( stack(ht - 2)->link(dir(ht - 2)) = rPtr; ) break; ) ) else ( rPtr = stack(ht - 1)->link(0); if (!rPtr) break; if (rPtr->color == RED) ( stack(ht - 1)->color = RED; rPtr->color = BLACK; stack(ht - 1)->link(0) = rPtr->link(1); rPtr->link(1) = stack(ht - 1); if (stack(ht - 1) == root) ( root = rPtr; ) else ( stack(ht - 2)->link(dir(ht - 2)) = rPtr; ) dir(ht) = 1; stack(ht) = stack(ht - 1); stack(ht - 1) = rPtr; ht++; rPtr = stack(ht - 1)->link(0); ) if ((!rPtr->link(0) || rPtr->link(0)->color == BLACK) && (!rPtr->link(1) || rPtr->link(1)->color == BLACK)) ( rPtr->color = RED; ) else ( if (!rPtr->link(0) || rPtr->link(0)->color == BLACK) ( qPtr = rPtr->link(1); rPtr->color = RED; qPtr->color = BLACK; rPtr->link(1) = qPtr->link(0); qPtr->link(0) = rPtr; rPtr = stack(ht - 1)->link(0) = qPtr; ) rPtr->color = stack(ht - 1)->color; stack(ht - 1)->color = BLACK; rPtr->link(0)->color = BLACK; stack(ht - 1)->link(0) = rPtr->link(1); rPtr->link(1) = stack(ht - 1); if (stack(ht - 1) == root) ( root = rPtr; ) else ( stack(ht - 2)->link(dir(ht - 2)) = rPtr; ) break; ) ) ht--; ) ) ) // Print the inorder traversal of the tree void inorderTraversal(struct rbNode *node) ( if (node) ( inorderTraversal(node->link(0)); printf("%d ", node->data); inorderTraversal(node->link(1)); ) return; ) // Driver code int main() ( int ch, data; while (1) ( printf("1. Insertion 2. Deletion"); printf("3. Traverse 4. Exit"); printf("Enter your choice:"); scanf("%d", &ch); switch (ch) ( case 1: printf("Enter the element to insert:"); scanf("%d", &data); insertion(data); break; case 2: printf("Enter the element to delete:"); scanf("%d", &data); deletion(data); break; case 3: inorderTraversal(root); printf(""); break; case 4: exit(0); default: printf("Not available"); break; ) printf(""); ) return 0; )
 // Implementing Red-Black Tree in C++ #include using namespace std; struct Node ( int data; Node *parent; Node *left; Node *right; int color; ); typedef Node *NodePtr; class RedBlackTree ( private: NodePtr root; NodePtr TNULL; void initializeNULLNode(NodePtr node, NodePtr parent) ( node->data = 0; node->parent = parent; node->left = nullptr; node->right = nullptr; node->color = 0; ) // Preorder void preOrderHelper(NodePtr node) ( if (node != TNULL) ( cout right); ) ) // Inorder void inOrderHelper(NodePtr node) ( if (node != TNULL) ( inOrderHelper(node->left); cout left); postOrderHelper(node->right); cout left, key); ) return searchTreeHelper(node->right, key); ) // For balancing the tree after deletion void deleteFix(NodePtr x) ( NodePtr s; while (x != root && x->color == 0) ( if (x == x->parent->left) ( s = x->parent->right; if (s->color == 1) ( s->color = 0; x->parent->color = 1; leftRotate(x->parent); s = x->parent->right; ) if (s->left->color == 0 && s->right->color == 0) ( s->color = 1; x = x->parent; ) else ( if (s->right->color == 0) ( s->left->color = 0; s->color = 1; rightRotate(s); s = x->parent->right; ) s->color = x->parent->color; x->parent->color = 0; s->right->color = 0; leftRotate(x->parent); x = root; ) ) else ( s = x->parent->left; if (s->color == 1) ( s->color = 0; x->parent->color = 1; rightRotate(x->parent); s = x->parent->left; ) if (s->right->color == 0 && s->right->color == 0) ( s->color = 1; x = x->parent; ) else ( if (s->left->color == 0) ( s->right->color = 0; s->color = 1; leftRotate(s); s = x->parent->left; ) s->color = x->parent->color; x->parent->color = 0; s->left->color = 0; rightRotate(x->parent); x = root; ) ) ) x->color = 0; ) void rbTransplant(NodePtr u, NodePtr v) ( if (u->parent == nullptr) ( root = v; ) else if (u == u->parent->left) ( u->parent->left = v; ) else ( u->parent->right = v; ) v->parent = u->parent; ) void deleteNodeHelper(NodePtr node, int key) ( NodePtr z = TNULL; NodePtr x, y; while (node != TNULL) ( if (node->data == key) ( z = node; ) if (node->data right; ) else ( node = node->left; ) ) if (z == TNULL) ( cout << "Key not found in the tree"  left == TNULL) ( x = z->right; rbTransplant(z, z->right); ) else if (z->right == TNULL) ( x = z->left; rbTransplant(z, z->left); ) else ( y = minimum(z->right); y_original_color = y->color; x = y->right; if (y->parent == z) ( x->parent = y; ) else ( rbTransplant(y, y->right); y->right = z->right; y->right->parent = y; ) rbTransplant(z, y); y->left = z->left; y->left->parent = y; y->color = z->color; ) delete z; if (y_original_color == 0) ( deleteFix(x); ) ) // For balancing the tree after insertion void insertFix(NodePtr k) ( NodePtr u; while (k->parent->color == 1) ( if (k->parent == k->parent->parent->right) ( u = k->parent->parent->left; if (u->color == 1) ( u->color = 0; k->parent->color = 0; k->parent->parent->color = 1; k = k->parent->parent; ) else ( if (k == k->parent->left) ( k = k->parent; rightRotate(k); ) k->parent->color = 0; k->parent->parent->color = 1; leftRotate(k->parent->parent); ) ) else ( u = k->parent->parent->right; if (u->color == 1) ( u->color = 0; k->parent->color = 0; k->parent->parent->color = 1; k = k->parent->parent; ) else ( if (k == k->parent->right) ( k = k->parent; leftRotate(k); ) k->parent->color = 0; k->parent->parent->color = 1; rightRotate(k->parent->parent); ) ) if (k == root) ( break; ) ) root->color = 0; ) void printHelper(NodePtr root, string indent, bool last) ( if (root != TNULL) ( cout << indent; if (last) ( cout << "R----"; indent += " "; ) else ( cout  right, indent, true); ) ) public: RedBlackTree() ( TNULL = new Node; TNULL->color = 0; TNULL->left = nullptr; TNULL->right = nullptr; root = TNULL; ) void preorder() ( preOrderHelper(this->root); ) void inorder() ( inOrderHelper(this->root); ) void postorder() ( postOrderHelper(this->root); ) NodePtr searchTree(int k) ( return searchTreeHelper(this->root, k); ) NodePtr minimum(NodePtr node) ( while (node->left != TNULL) ( node = node->left; ) return node; ) NodePtr maximum(NodePtr node) ( while (node->right != TNULL) ( node = node->right; ) return node; ) NodePtr successor(NodePtr x) ( if (x->right != TNULL) ( return minimum(x->right); ) NodePtr y = x->parent; while (y != TNULL && x == y->right) ( x = y; y = y->parent; ) return y; ) NodePtr predecessor(NodePtr x) ( if (x->left != TNULL) ( return maximum(x->left); ) NodePtr y = x->parent; while (y != TNULL && x == y->left) ( x = y; y = y->parent; ) return y; ) void leftRotate(NodePtr x) ( NodePtr y = x->right; x->right = y->left; if (y->left != TNULL) ( y->left->parent = x; ) y->parent = x->parent; if (x->parent == nullptr) ( this->root = y; ) else if (x == x->parent->left) ( x->parent->left = y; ) else ( x->parent->right = y; ) y->left = x; x->parent = y; ) void rightRotate(NodePtr x) ( NodePtr y = x->left; x->left = y->right; if (y->right != TNULL) ( y->right->parent = x; ) y->parent = x->parent; if (x->parent == nullptr) ( this->root = y; ) else if (x == x->parent->right) ( x->parent->right = y; ) else ( x->parent->left = y; ) y->right = x; x->parent = y; ) // Inserting a node void insert(int key) ( NodePtr node = new Node; node->parent = nullptr; node->data = key; node->left = TNULL; node->right = TNULL; node->color = 1; NodePtr y = nullptr; NodePtr x = this->root; while (x != TNULL) ( y = x; if (node->data data) ( x = x->left; ) else ( x = x->right; ) ) node->parent = y; if (y == nullptr) ( root = node; ) else if (node->data data) ( y->left = node; ) else ( y->right = node; ) if (node->parent == nullptr) ( node->color = 0; return; ) if (node->parent->parent == nullptr) ( return; ) insertFix(node); ) NodePtr getRoot() ( return this->root; ) void deleteNode(int data) ( deleteNodeHelper(this->root, data); ) void printTree() ( if (root) ( printHelper(this->root, "", true); ) ) ); int main() ( RedBlackTree bst; bst.insert(55); bst.insert(40); bst.insert(65); bst.insert(60); bst.insert(75); bst.insert(57); bst.printTree(); cout << endl << "After deleting" << endl; bst.deleteNode(40); bst.printTree(); )  

Rood-zwarte boomtoepassingen

  1. Om eindige kaarten te implementeren
  2. Om Java-pakketten te implementeren: java.util.TreeMapenjava.util.TreeSet
  3. Om Standard Template Libraries (STL) te implementeren in C ++: multiset, map, multimap
  4. In Linux Kernel

Interessante artikelen...